

Network Middleware for Next-Generation Network Computing

Martin Swany

Introduction and Motivation

- Phoebus is another name for the mythical Apollo in his role as the "sun god"
- The DOE UltraScienceNet is a tremendous resource
- Our goal is to work with DOE collaborators to help extend its reach and impact
 - While exploring protocols and system software to aid Science applications
- Novel research environments require sweeping changes to systems
 - As well as research to foster community understanding

Approach

- Allow legacy applications to use UltraScienceNet via various adaptation mechanisms and adapter subsystems
 - Embrace the heterogeneity of end-to-end network environments
- Adaptation
 - Middleware Software Layers
 - Protocols
 - Prototype Platforms

Signaling Adaptation

- The world consists of domains with various signaling disciplines and protocols
- We need to map between different administrative domains and protocols
 - Meta-scheduling among multiple resource brokers and multi-phase signaling
- Algorithms to assemble and optimize composite paths
 - Even in a single administrative domain, this is complex

Reservation Adaptation

- Resource reservation of network resources is only part of the picture for large-scale computing and data movement scenarios
- Emerging Grid-related technologies like WS-Agreement give a rich language to speak about reservations
- Advance co-allocation of networks, storage and compute resources
- Grid/Web Service interfaces to brokers

Transport Adaptation

- The appropriate transport protocol may depend on the particular network
 - Type and instance
- When networks are not homogeneous, a single transport protocol may not be appropriate
 - End to end connectivity doesn't necessarily mean E2E flow control at the packet level
- Establish an E2E "session"
 - Based on the Logistical Session Layer (SC'04)

Transport Adaptation

LSL vs. Direct Transfers from U. Del to UCSB (LSL depots at WASH and LOSA)

Approach and Technology

- Middleware and protocols for end systems
 - Software libraries to enable applications
- Network Service Middleware
- Network-processor based implementation of Transport adaptation
 - Intel IXP based platforms can sustain line rate
 - This development is underway
- Transparent adapter for LSL
 - Unix binaries can be enabled at runtime

Conclusion

- Ultimate integration of various components helps realize the goal of agile, extreme performance networking
- * Automatic scheduling and resource allocation can drive down resource acquisition time and drive up utilization
- Composition of various signaling and transport domains in single unifying framework
 - Not as an ad-hoc assemblage, but as a new architectural model

